Cnes

CENTRE NATIONAL D'ÉTUDES SPATIALES

Star-based Calibration Techniques

for PLEIADES-HR Satellites

CALCON 2009

Sébastien FOUREST – Laurent LEBEGUE

Using the stars...

Operational interests : cloud free scenes, eclipse orbit, ...

CALCON 2009 , August 24-27 , Logan

Choosing the right stars

Centering the star in the sampling grid

MTF measurement

Other applications

Choosing the right stars

Centering the star in the sampling grid

MTF measurement

Other applications

$$R = \left(\frac{f}{dx}\right)^2 . I_0 . 2.512^{-Mag}$$

 $L_2 < R < L_{\max}$

Choosing the right stars spectral range

Class	temperature	color	Class	temperature	color
В	10 000 - 25 000 K	Blue-white	G	5 000 - 6 000 K	Yellow (the Sun)
Α	7 500 - 10 000 K	White	Κ	3 500 - 5 000 K	Yellow – Orange
F	6 000 - 7 500 K	Yellow – white	M	< 3 500 K	Red

CALCON 2009 , August 24-27 , Logan

Choosing the right stars spectral range

Classes G8 \rightarrow K3 : uniform spectrum

40 stars compliant with magnitude constraints

CALCON 2009 , August 24-27 , Logan

Choosing the right stars spectral range

Other classes : spectral dependencies study

Area of particular interest in the sky

CALCON 2009, August 24-27, Logan

¢ cnes

Choosing the right stars

The exploitable sky

CALCON 2009, August 24-27, Logan

Choosing the right stars

Centering the star in the sampling grid

MTF measurement

Other applications

• Where was the star ?

• Where was the star ?

Here?

• Where was the star ?

CALCON 2009, August 24-27, Logan

Centering in the sampling grid Basic methods

Basic methods :

• Maximum pixel : accuracy = 0.5px

• Barycentre : accuracy = 0.25px

$$OC = \left(\sum r_{i,j} . OM_{i,j}\right) / \sum r_{i,j}$$

• Search for the real Fourier Transform...

CALCON 2009	, August 24-27	, Logan
--------------------	----------------	---------

CALCON 2009	, August 24-27	, Logan
-------------	----------------	---------

CALCON 2009	, August 24-27	, Logan
--------------------	----------------	---------

\rightarrow Looking for the phase ramp that cancel the Fourier transform :

$$(dx, dy)$$
? $FT * \varphi_{ramp}(dx, dy) \equiv 0$

→ **Problem** : aliased images

$$\varphi_{ramp}^{-1} \circ sampling \circ \varphi_{ramp}(MTF) \neq realTF$$

Can be avoided as long as aliasing is low, ie MTF_{fs} ≈ 0

Restrain the cancellation of the Fourier transform in the vicinity of low

frequencies

Accuracy = 0.04 pixel

CALCON 2009 , August 24-27 , Logan

Centering in the sampling grid PSF correlation

CALCON 2009, August 24-27, Logan

¢ cnes

Centering in the sampling grid

Simulations from real PSF and random shifts

Choosing the right stars

MTF measurement

Other applications

MTF measurement Principle

■PSF = image of a punctual source

Randomly sampled PSF = images of stars

 \rightarrow Interlacing the images leads to the PSF

Problem : irregular sampling...

Solution : known shifts + Fourier reasoning

MTF measurement

MTF measurement Equations

$$FT(star) = alias(MTF * \varphi_{ramp}(dx, dy))$$

■dx and dy are known for each image

Multiplying by a phase ramp is a linear operation

Aliasing in the Fourier domain is a linear operation

→linear problem : $\begin{bmatrix} FT(star_1) \\ FT(star_2) \\ FT(star_n) \end{bmatrix} = [A][MTF]$

Efficient resolution with a least squares algorithm

Regularization

Known cut-off frequency:

$$MTF(f_x, f_y) = 0 \text{ if } \sqrt{\left(f_x^2 + f_y^2\right)} > f_{cutoff}$$

Still a linear constraint, can be included in the least squares

equations with a variable weight

¢ cnes

MTF measurement

Results

Simulations include :

- Signal and obscurity noise
- Compression
- Micro-vibrations

 $[-3f_s/2; 3f_s/2]$ - 5 stars - regularization

CALCON 2009,	August 24-27	, Logan
--------------	--------------	---------

MTF measurement Results

MTF error (RMS) vs. number of stars used in computation

Assessment of MTF with an oversampling of 2 or 3, with or without regularization

CALCON 2009, August 24-27, Logan

MTF measurement

Ability to measure the system MTF

CALCON 2009, August 24-27, Logan

MTF measurement

Operational aspects

Shooting 10 times the same star = 2 minutes

MTF measurement accuracy ≈ 10⁻³

Dozens of stars accessible 15 times a day even during eclipses

Sensitivities : thermal, seasonal, spectral,...

Very promising in comparison with existing methods

Choosing the right stars

Centering the star in the sampling grid

MTF measurement

Other applications

Other applications Refocus

f₀ unknown

Defocus = multiplication by a filter \rightarrow Linear operation

One single least squares resolution with all the images and a guessed value for f_0

¢ cnes

Other applications

Line of sight dynamic stability

Using the stars

stationary in an inertial frame

■If the sensor remains pointed at the star, it will create a bright column in the image whose straightness depends on the line-wise behaviour of the potential micro-vibrations

Image without microvibrations

Image with microvibrations

CALCON 2009 , August 24-27 , Logan

¢ cnes

Other applications

Line of sight dynamic stability

Image simulations

- ■MTF 0.12 at nyquist frequency
- ■SNR 150 at 100 W/m²/sr/µm
- Compression 2.5 bits/pel
- ■13 lines TDI
- Almost-inertial guidance
- Disturbances characteristics
- Absolute position along the time is given by the barycentre measurement for each line
- and low pass filtering [0..1000 Hz]

Other applications

Line of sight dynamic stability

Measurement accuracy

■Frequency until 800 Hz are observed

Amplitude accuracy depends on the star magnitude (SNR of illuminated pixels)

■RMS deviation ~ 0.02 PA pixels for magnitude 1

■RMS deviation ~ 0.10 PA pixels for magnitude 2.5

Brand new image calibration methods have been designed and are still studied thanks to Pleiades-HR satellite agility

These capabilities offer large operational benefits

New efficient algorithms lead to outstanding performances:

- ■~10⁻³ for MTF
- ■~30µm for refocus
- ■0.02px for micro-vibrations

Next time : operational results !

CALCON 2009 , August 24-27 , Logan

cnes Thank you for your attention !

CALCON 2009 , August 24-27 , Logan